\int_{-\infty}^\infty\hat\xi\,e^{2\pi i\xi x}\,d\xi
\exp_a b = a^b, \exp b = e^b, 10^m
\dot{a}, \ddot{a}, \acute{a}, \grave{a}
\begin{Vmatrix} x & y \\ z & v \end{Vmatrix}
\begin{aligned} f(x) & = (m+n)^2 \\ & = m^2+2mn+n^2 \\ \end{aligned}
$(33)^{2n+1}+(43)^{2n+1}$
$(33)3$
a^4
\exp_a b = a^b, \exp b = e^b, 10^m \exp_a b = a^b, \exp b = e^b, 10^m